
Understanding the principles of digital systems & processes.

A course for amateur radio enthusiasts wishing to come to grips with micro controller programming.

By Mike Brink. ZS6MEG

www.zs6meg.co.za

1. Gates

A gate, simply stated, is a switch. Logic systems, digital electronics, rely on the state of a

switch to represent information. One can say that when a switch is open, there is no

voltage at the output and no path for the current to flow. This represents a ‘0’, ‘Low’ or a

‘No’ state. When the switch is closed, there is a voltage at the output and current can

flow. This represents a ‘1’, ‘High’ or ‘Yes’ state at the output.

The closing of a switch, enables electrons to flow through a conductor and causes a light

to burn. The state of this switch, open or closed, therefore represents a condition. This

condition is reflected by the light, which is burning or not burning. A cause and an effect.

This is the principle employed by digital system. An input into a digital system will result

in an output. It starts off at a very basic and simple level with a small number of very

simple building blocks. These building blocks are arranged in complex configurations to

perform complex functions. The point however, is that no matter how complex the

system becomes, the building blocks themselves remain very simple. It is like looking at

a network of traffic lights that are spread throughout a city. Interlocked and sequenced to

facilitate the smooth flow of traffic. Quite daunting when viewed in its entirety, yet very

simple when you look at it in the context that it is just a collection of lights and switches.

So, if you know what a light is and you know what a switch is, well then it becomes

considerably easier to understand the whole.

And that is all that a digital system is, just a collection of lights and switches. Inputs and

outputs. The key difference is that an output can control an input. A light can control a

switch. If the light burns, it causes a switch to close, and if the light is off, then the switch

that it is controlling is open. On, Off, Open, Closed, High, Low, Enabled, Disabled,

Active, Inactive, Yes, No. These are the states that are indicated in a digital system by a

bit of data which can be represented by a 0 or a 1, a logic level of 0Volts or 5Volts.

1.1 The buffer.

The buffer does not change the incoming signal. It the input is a 0, the output is a 0, if the

input is a 1, then the output is a 1. Well then why use a buffer? There are numerous

reasons.

In a digital system, speed is everything. The problem however is the length of the

conductors. The longer the wires, the greater the inductive and capacitive (reactive)

components become that interact with the signal being carried by the wire. This causes

‘ringing’, unwanted oscillations induced by the sharp switching edges of the digital lines

as it moves from a high to a low and a low to a high state.

Varying Bus Structures

In a processing environment, there are two regions. Local and remote. Local devices are

things like memories which we want close to the processor for high speed interactions.

Remote devices are things like printers which, due to their physical nature are located a

meter or many meters from the processor.

Data is carried from the processor to the memory along a data bus. Data is also carried to

the printer along an extension of the same data bus. To isolate the printer data bus, we use

a buffer. This prevents the reactive signals that would be generated by the printer cable

from interacting with the CPU bus.

Fanout

Another problem is fanout. Sometimes there are a lot of components being driven by a

signal line. This causes a degree of line loading. The more devices, the greater the load.

So instead of using one line to drive 20 devices, we use one line to drive 4 buffers. Each

buffer in turn drives 5 devices. We would therefore use a buffer to isolate devices that

would load the signal line.

Propagation delay.

Every device has what is called a propagation delay. This is its reaction time. It is

measured in periods as short as a few nano seconds, but the delay is there. It does become

necessary from time to time to ensure that certain events, driven by an input, are

sequenced to make one event happen before the other. One would use a buffer to slow

down a signal by making use of its propagation delay. This is useful when one needs a

small delay. For longer delays, one would use a delay line, which is a buffer with a preset

delay period.

Waveform Shaping (Cleaning)

As a signal is transferred over a long line it tends to deteriorate. A buffer would be used

to restore the sharp digital nature of the signal, eliminating signal degradation.

These are the key functions of a buffer.

Interconnecting various bus structures

Catering for large fanout configurations

Introducing a propagation delay.

Cleaning up a digital waveform

1.2 Inverter

The function of the inverter is to invert the incoming signal. It changes a ‘1’ into a ‘0’

and a ‘0’ into a ‘1’. Other than that it can also be used as a buffer. It is sometimes

referred to as an inverting buffer.

1.3 The OR Gate

This is a decision gate. Imagine two bridges next to each other across a river. To get to

the other side, one can cross over using one bridge or the other. In this way, the gate has

two inputs. One can activate one input OR the other in order to generate an output.

Another way of stating it is that the output will go high if either of the two inputs goes

high.

1.4 The AND gate.

In this decision gate we imagine two bridges crossing two rivers one after the other. To

get to the destination we must cross one bridge AND then we must cross the other bridge.

So this gate has two inputs. Both inputs to this gate must go high for there has to be a

high on the output. Another way of stating it is that in order for the output to go high,

both inputs must go high.

1.5 The Exclusive OR gate

The exclusive or is used to indicate a difference between the two inputs. If both inputs are

the same, the output is low. If either of the inputs is high and the other is low, if the two

inputs are different, the output is high.

In summarizing,

The buffer output reflects the state of its input

The inverter’s output reflects an inverted state of its input

The OR gates output will go high if either or both of its inputs go high

The AND gates output will go high only if both of its inputs go high

The Exclusive OR gates output will go high if the two inputs are not equal.

These five devices, these logical elements, are the function blocks around which all

digital systems are constructed. No matter how large or complex the system, when one

reduces it to its basic components, you will end up with one of these five building blocks.

2. Data

Now we look at the control signals. The input data. Every state is represented by a high

or a low, a ‘0’ or a ‘1’. This is referred to as a data bit. The plural of data is datum, but in

digital systems we always refer to it in the singular. In computers we have numbers,

letters, words, images, sounds and programs. These are all made up of data in various

formats.

2.1 Integers

These data types are made up of multiple groups of data bits that basically represent

numbers in what is called a binary progression of 2^n

The first bit, bit 0, can represent the presence of 1 item of data. 1. 2^0 = 1. When

combined with a second bit, the two bits can represent 2 items of data. 2^1 = 2. In this

way, following the binary progression, 2^0 = 1, 2^1=2, 2^3=4, 2^4=8. Bit 0 therefore

represents a 1, bit 1 = 2, bit 2 = 4, bit 3 = 8 and so on for as many bits as you need to

represent the data value you want to work with.

If I wanted to represent a 5, it would be represented by a high on bit 0 (=1) and a high on

bit 3(=4). A 1 and a 4 together = 5. So in binary 1001 = 5 in decimal. There is a naming

convention for data groupings.

1 data element = bit.

4 data bits = nybble

8 data bits = byte

16 data bits = half word

32 data bits = word

64 data bits = double word

128 data bits = long word

In this manner, groups of bits are used to represent integers. Positive value integers.

2.2 Signed and unsigned integers.

In the real world there are however negative as well as positive numbers that we would

wish to represent with our binary value. By default, for the sake of explanation, we are

going to use a 16-bit value for the sake of the explanation.

A 16 bit value, in integer format can be used to represent a value between 0 and 65535

(which is 2^16). If we had a 16 bit counter that was set to 0. (0000000000000000) and we

incremented it, it would now be 1 (0000000000000001) . But if we decremented the

counter, it would read –1 (1111111111111111) decrementing it again, it would read –2

(1111111111111110)

We therefore use the most significant bit, D15, to represent the sign of the value being a

positive or a negative. 0 = positive, 1 = negative. Using this convention we can now

represent a value of - 32768 to + 32767. To invert a number, we take the basic number,

for example 1, and we add 32766 to it. 0000000000000001 + 1111111111111110 =

1111111111111111. Lets say we had a number of –1, (1111111111111111) and we

added 2 (0000 0000 0000 0010) to it. We would then end up with a total of +1.

And so, we have signed and unsigned integers. We choose the integer range for the value

of the number we wish to represent. If the number is less than 128, like a percentage, we

choose 8 bits (from –128 to + 127) .

2.3 Real and integer.

The world not just defined by integers. Whatever unit of measure we choose, there is

invariably a partial value. So, while integers may be fine for counting individuals in a

room or houses in a street, the units of measure, like meters, grams, seconds etc,

invariably have a fractional component to them. Like 2.75 meters.

These are referred to as real numbers.

With real numbers we can use one of two systems. Either fixed point or floating point

fractional arithmetic. Fixed point and floating point values contain an inherent error of 1

bit of the smallest bit value used. The error is very small but it can tend to accumulate

over many thousands of calculations.

A fixed point system would use 64 bits with the integer half of the value being

represented by the upper 31 bits and the fractional portion being represented by the lower

32 bits. One can of course split the two halves in whatever ratio is most suitable for ones

calculation. One could for example use a split of 40 to 23.

In the fixed point system. Using a 31/32 split, bit number 32 becomes the units. Bit 31

becomes ½ of a unit, bit 30 becomes a ¼ of a unit and so on down the scale where bit 0 is

1/4294967296 of a unit . Using this system, we have a number range from 2147483648 to

–2147483648 with an accuracy of 0.0000000002 being a resolution of 10 places after

the decimal point.

In a floating point system, we use the last 8 bits of the value as an exponential marker

giving us a range of –2^23 to +2^23 with a range of –E127 to +E128 positions of the

decimal point with an 8 digit resolution. Ie 0.0000001 E-127 to 0.00000001 E+128.

Increasing the number of bits in the integer part increases the resolution while increasing

the number of bits in the exponential side increases the range.

Using the floating point system allows us to achieve a wider dynamic range of values in a

more compact data storage format than fixed point. The processing speed is hover, as

stated before, much slower, so for applications that do a large amount of number

crunching, fixed point is much faster.

2.4 Binary coded decimal

This is the most inefficient system in terms of processing speed and data storage. It is

however highly accurate and very easy to work with. When one uses BCD, one interacts

with the system in a manner parallel to our method of thinking. 4+5 = 9. One byte for 4,

one for 5 and one for 9. In applications where one processes a limited amount of data,

like in micro controller applications, this system is very nice and easy to use, even if it a

bit wasteful of space and processing resources. But, on a 10 MIPS (Million Instructions

Per Second) processor, you would not know the difference.

In BCD arithmetic, we specify one byte for the units, tens, hundreds, thousands etc, etc

for as far as we want to go to the left of the decimal point and we do likewise to the right

hand side of the decimal point.

Implementing BCD arithmetic is relatively straight forward. The difference being that

one does not have to convert a 32 bit binary value into a decimal value and vice versa. It

is all ready for you in decimal format.

Advantages, ease of use, disadvantages, inefficient use of data and coding but not

prohibitively so.

2.5 ASCII.

The American Standard Code for Information Interchange is a standards set of characters

that is represented by a sequence of numbers. The value of an ‘A’ is 65. The value of a

‘0’ is 48. In order to get the lower case value, add 32 to the upper case value of a

character. The ASCII code table uses the lower 128 numbers of the possible 256 numbers

that can be represented by an 8 bit value. The upper 128 chars are called the extended

ascii set and are usually reserved for graphics or application specific characters.

3. Mathematical Functions.

How the processor performs binary calculations.

3.1 The half adder

3.2 Addition using the full adder

3.3 Subtraction using the full adder

3.4 The D latch

3.5 Multiplication and division using the shift register

3.6 Successive approximation methods

3.7 Square roots

3.8 Trigonometric tabular functions

3.9 Digital signal processing and filtering examples

The micro-processor has what is called an arithmetic logic unit. The ALU. It is the

function of the ALU to do calculations and make decisions. Decisions can be based on

input data or on the result of calculations. A calculation can be performed as a result of a

decision made by the ALU.

In this chapter we will look at the process followed by a CPU, using its ALU, to perform

Addition, Subtraction, Multiplication, Division, Square, Root, Geometric, Filtering and

Complex high level mathematical functions.

3.1 The Half Adder.

This circuit will add two binary values. A and B. It will give a sum output and it will

provide a carry output. It functions according to the following truth table :

A B Sum Carry

0 0 0 0

1 0 1 0

0 1 1 0

1 1 0 1

The half adder is the basic building block of all mathematical functions.

3.2 Addition using theThe Full Adder.

The full adder makes use of two half adders to make up a complete adding function

block. It takes a ‘carry in’ from the previous full adder and passes a ‘carry out’ on to the

next stage of the adding module. The final carry out will set an overflow flag indicating

that the values added were greater than what the adder could handle.

3.3 Subtraction using the full adder.

Subtraction is purely the process of adding a negative number. We obtain the negative

value of a number, as stated above, by inverting it and adding 1 to it. So, using 8 bits as

an example, 7-6 = 1. so we take 7, 7 = ‘0000 0111’ , and apply it to input A. Then we

take 6 and invert it. 6 = ‘0000 0110’, inverted is ‘1111 1001’

0000 0111

+ 1111 1001

= 0000 0000 plus the overflow flag is set. Now we add 1.

+ 0000 0001

= 0000 0001. The result of 7 minus 6 is therefore 1.

A quick way to add a 1 without introducing extra code, is to set the carry input.

 0000 0111 + carry in

+ 1111 1001

= 0000 0001 + carry out.

The carry out during the process of subtraction indicates that a borrow did not take place.

A smaller number was subtracted from a larger number. The inverse of this indicator is

called the borrow flag. An overflow during addition is called the carry flag.

And a quick way to invert the input is to run every input through an inverter. In this case

we use the exclusive or as a programmable inverter. If one input is low, the output will

reflect the condition of the other input. If the input is high, the output will reflect the

inverse of the other input. The high input will also be fed to the carry in indicating that

this is a subtraction.

We use a control signal to indicate to this function block whether it is to add numbers

together or to subtract numbers from each other. The same control signal goes to carry in,

automatically adding 1 to the result in the case of subtraction. In this circuit, with

subtraction, the inverted input is always subtracted from the non-inverted input.

And so we have the first function block of our arithmetic logic unit that is capable of

addition or subtraction. It is also capable of indicating if there was a carry or borrow as a

result of the arithmetic operation.

3.4 The D latch

The D latch is a basic memory cell that remembers the state of an input ‘D’ when told to

by the ‘CLK’ input. This memory cell is used to retain data and is a key component of a

processing system. It is used in memory devices and it is also used in the ALU as a vital

part of the calculating process. It is used to hold the data that will be fed to the addition /

subtraction unit. It can also be configured to perform multiplication and division.

By connecting the latches as shown, one can create what is known as a shift register. This

shift register will shift data from right to left with every rising transition of the clock

pulse.

3.5 Multiplication and division using the shift register

Out D3 D2 D1 D0

0 0 0 1 1 (3)

0 0 1 1 0 <- (6)

0 1 1 0 0 <- (12)

1 1 0 0 0 <- (24)

As can be seen above, the initial value of 3 is multiplied by 2 every time the shift register

performs a left shift under command of the clock pulse.

Now let us say that we wanted to perform a multiplication of say 3 x 6. We could add 3

six times but that would become very long winded for larger numbers. So, we start with

the following condition.

 D6 D5 D4 D3 D2 D1 D0 Value

A= 0 0 0 0 0 1 1 (3)

B= 0 0 0 0 1 1 0 (Don’t Add A to PR)

PR= 0 0 0 0 0 0 0 (0)

We look at the LSB of B. If it is a 1, we add it to a product total. If it is a 0, we shift A

left and we shift B right. So, the two registers now look like this.

A= 0 0 0 0 1 1 0 <- (6)

B= 0 0 0 0 0 1 1 -> (Add A to PR)

PR= 0 0 0 0 1 1 0 (6)

The LSB of B is now a 1 so we add the value of A to the product register.

Now we shift A left again, and B right again

A= 0 0 0 1 1 0 0 <- (12)

B= 0 0 0 0 0 0 1-> (Add A to PR)

PR= 0 0 1 0 0 1 0 (18)

And so, by rotating the two registers past each other in opposite directions it becomes

possible to perform multiplication.

Division is done the same way.

A = 0 0 1 0 0 1 0 (18)

B = 0 0 0 0 1 1 0 (6)

RES= 0 0 0 0 0 0 0 (0)

We begin by shifting B to the left by as many times as it takes to place the most

significant bit (MSB) of B in the MSB position of A and we remember how many times

we did it.

A= 0 0 1 0 0 1 0 (18)

B = 1 1 0 0 0 0 0 <<< (60)

RES= 0 0 0 0 0 0 0 (0)

Now we look to see if we can subtract B from A without a Borrow. And the answer is no,

so we shift B right and we shift RES left.

A= 0 0 1 0 0 1 0 (18)

B= 0 1 1 0 0 0 0 > (48)

We subtract again, and the answer is no again so we repeat the process till we can.

A= 0 0 1 0 0 1 0 (18)

B= 0 0 1 1 0 0 0 > (24)

Again

A= 0 0 1 0 0 1 0 (18)

B= 0 0 0 1 1 0 0 > (12)

RES= 0 0 0 0 0 0 1 < (1)

And this time we can subtract B from A. So we set the least significant bit of the result

register. We shift B left and we shift RES left by 1 position.

A = 0 0 0 0 1 1 0 (18- 12 = 6)

B= 0 0 0 0 1 1 0 > (6)

RES= 0 0 0 0 0 1 1 < (2)

Once again, we subtract B from A. If it can be performed without a borrow, we once

again set the LSB of RES.

A= 0 0 0 0 0 0 0 (0)

B= 0 0 0 0 0 1 1> (3)

RES= 0 0 0 0 1 1 0< (6)

So, to complete the division, we shifted B left 4 times, then we shifted B right 4 times,

subtracting B from A every time B was greater or equal to A, and marking the successful

transaction in RES. At the end of the process, A=0 and the result is in the RES latches.

In this way, the digital system can perform addition, subtraction, multiplication and

division.

3.6 Successive approximation methods.

Some processors have a dedicated hardware multiplier to perform fast multiplications.

The process of division is somewhat more complicated and requires more circuitry or

software. We can therefore employ a hardware multiplier to take a number of guesses as

to what the answer of a division equation is.

When performing multiplication or division, one must perform a repeated operation for

every bit of the data value. Division however requires more steps than multiplication.

With a processor that is equipped with a fast hardware multiplier, we use the multipliers

functionality to speed up the process.

When doing multiplication or division, we have to perform an addition or subtraction

operation for every bit of the two factors that are being multiplied or divided. So, an 8 bit

by 8 bit division or multiplication requires 8 arithmetic operations.

Using an 8 bit value as an example, we follow this process to obtain the result of 236 /

12.

We start with 12 x 128 = 1536. This causes an overflow so we ignore it.

A= 1 0 0 0 0 0 0 0 -> (128 x)

B= 0 0 0 0 1 1 0 0 (12)

C= 1 1 1 0 1 1 0 0 (236)

RES = 0 0 0 0 0 0 0 0 <-

We shift A to the right once, RES to left once and repeat the process

12 x 64 = 768 is greater than 236, so we have an overflow, so we ignore it.

A= 0 1 0 0 0 0 0 0 -> (64 x)

B= 0 0 0 0 1 1 0 0 (12)

C= 1 1 1 0 1 1 0 0 (236)

RES = 0 0 0 0 0 0 0 0 <-

We shift A to the right once, RES to left once and repeat the process

12 x 32 = 384 is greater than 236, so we have an overflow, so we ignore it.

A= 0 0 1 0 0 0 0 0 -> (32 x)

B= 0 0 0 0 1 1 0 0 (12)

C= 1 1 1 0 1 1 0 0 (236)

RES = 0 0 0 0 0 0 0 0 <-

We shift A to the right once, RES to left once and repeat the process

12 x 16 = 192 is smaller than 236, and we have no overflow, so we process it.

192 is smaller than 236 so we subtract it and mark the transaction by setting the LSB of

the RES register

A= 0 0 0 1 0 0 0 0 -> (16 x)

B= 0 0 0 0 1 1 0 0 (12 = 192)

C= 0 0 1 0 1 1 0 0 (236-192=44)

RES = 0 0 0 0 0 0 0 1 <- (1)

We shift A to the right once, RES to left once and repeat the process

12 x 8 = 96 is greater than 44, and we have an overflow, so we ignore it.

A= 0 0 0 0 1 0 0 0 -> (8 x)

B= 0 0 0 0 1 1 0 0 (12 = 96)

C= 0 0 1 0 1 1 0 0 (44)

RES = 0 0 0 0 0 0 1 0 <- (2)

We shift A to the right once, RES to left once and repeat the process

12 x 4 = 48 is greater than 48, and we have an overflow, so we ignore it.

A= 0 0 0 0 0 1 0 0 -> (4 x)

B= 0 0 0 0 1 1 0 0 (12 = 48)

C= 0 0 1 0 1 1 0 0 (44)

RES = 0 0 0 0 0 1 0 0 <- (4)

We shift A to the right once, RES to left once and repeat the process

12 x 2 = 24 is smaller than 44, and we have no overflow, so we process it.

24 is smaller than 44 so we subtract it and mark the transaction by setting the LSB of the

RES register

A= 0 0 0 0 0 0 1 0 -> (2 x)

B= 0 0 0 0 1 1 0 0 (12 = 24)

C= 0 0 0 1 0 1 0 0 (44-24=20)

RES = 0 0 0 0 1 0 0 1 <- (9)

We shift A to the right once, RES to left once and repeat the process

12 x 1 = 12 is smaller than 20, and we have no overflow, so we process it.

12 is smaller than 20 so we subtract it and mark the transaction by shifting the RES

register left and setting the LSB of the RES register to mark a valid transaction.

A= 0 0 0 0 0 0 0 1 -> (1 x)

B= 0 0 0 0 1 1 0 0 (12 = 12)

C= 0 0 0 0 1 0 0 0 (20 - 12 = 8)

RES = 0 0 0 1 0 0 1 1 <- (19)

We shift A to the right once, RES to left once and repeat the process

We have now calculated that 236 / 12 = 19 remainder 8 or 19.666

This method of successive approximation asks if the result of 12 x 128 is greater or

smaller than the number being divided, the divisor. It then successively asks the same

question for 64, 32, 16, 8, 4, 2 and 1. When the answer is greater, the process is ignored

for that cycle. If it is smaller, the product of the multiplication is subtracted from the

divisor, a mark is made in the RES register, and the process is repeated downwards to 1.

This process of guessing or successive approximation is used in many mathematical and

sampling processes to acquire results.

3.7 Square roots

Lets say for example you want to obtain a square root. Lets take for example 10608. We

start with 128 and we test it. We move A to B. 128 x 128 = 16384. We see that is bigger

than 10608 so we ignore it.

A= 1 0 0 0 0 0 0 0 -> (128)

B = 1 0 0 0 0 0 0 0 (128)

RES= 0 0 0 0 0 0 0 0 <- (0)

Shift the A left and RES right 1 position. We see that the square of 64 is 4096 and that is

smaller than 10608 so we process it. We move A to B, add C to B, and move the result

back to C. Mark the transaction in the RES register and shift A and C right and left.

A= 0 1 0 0 0 0 0 0 -> (64) x 64 = 4096

B = 0 1 0 0 0 0 0 0 (64)

C= 0 1 0 0 0 0 0 0 (64)

RES= 0 0 0 0 0 0 0 1 <- (1)

We have now guessed that the root of 10608 is smaller than 128 and larger than 64. We

now repeat the process to a higher level of resolution. We checked with a resolution of

64, now we repeat the process for 32. We know that the answer is somewhere between

64 and 128. We must now decide if it is larger or smaller than 96. (64+32)

Shift the A left and RES right 1 position. We see that the square of 96 is 9216 and that is

smaller than 10608 so we process it. We move A to B, add C to B, and move the result

back to C. Mark the transaction in the RES register and shift A and C right and left.

A= 0 0 1 0 0 0 0 0 -> (32)

B = 0 1 1 0 0 0 0 0 (96) x 96 = 9216

C= 0 1 1 0 0 0 0 0 (96)

RES= 0 0 0 0 0 0 1 1 <- (3)

We have now guessed that the root of 10608 is smaller than 112 and larger than 96. We

now repeat the process to a higher level of resolution and look at the half way point

between the 2 numbers.

Shift the A left and RES right 1 position. We see that the square of 112 is 12544 and that

is larger than 10608 so we ignore it. We shift A and C right and left.

A= 0 0 0 1 0 0 0 0 -> (16)

B = 0 1 1 0 0 0 0 0 (112) x 112 = 12544

C= 0 1 1 0 0 0 0 0 (96)

RES= 0 0 0 0 0 1 1 0 <- (6)

We have now guessed that the root of 10608 is smaller than 112 and larger than 96. We

now repeat the process to a higher level of resolution and look at the half way point

between the 2 numbers.

Shift the A left and RES right 1 position. We see that the square of 104 is 10816 and that

is larger than 10608 so we ignore it. We shift A and C right and left.

A= 0 0 0 0 1 0 0 0 -> (8)

B = 0 1 1 0 1 0 0 0 (104) x 104 = 10816

C= 0 1 1 0 0 0 0 0 (64)

RES= 0 0 0 0 1 1 0 0 <- (12)

We have now guessed that the root of 10608 is smaller than 104 and larger than 96. We

now repeat the process to a higher level of resolution and look at the half way point

between the 2 numbers.

Shift the A left and RES right 1 position. We see that the square of 100 is 10000 and that

is smaller than 10608 so we process it. We move A to B, add C to B, and move the result

back to C. Mark the transaction in the RES register and shift A and C right and left.

A= 0 0 0 0 0 1 0 0 -> (4)

B = 0 1 1 0 0 1 0 0 (100) x 100 = 10000

C= 0 1 1 0 0 1 0 0 (100)

RES= 0 0 0 1 1 0 0 1 <- (25)

We have now guessed that the root of 10608 is smaller than 104 and larger than 100. We

now repeat the process to a higher level of resolution and look at the half way point

between the 2 numbers.

Shift the A left and RES right 1 position. We see that the square of 102 is 10404 and that

is smaller than 10608 so we process it. We move A to B, add C to B, and move the result

back to C. Mark the transaction in the RES register and shift A and C right and left.

A= 0 0 0 0 0 0 1 0 -> (2)

B = 0 1 1 0 0 1 1 0 (102) x 102 = 10404

C= 0 1 1 0 0 0 1 0 (102)

RES= 0 0 1 1 0 0 1 1 <- (51)

We have now guessed that the root of 10608 is smaller than 104 and larger than 100. We

now repeat the process to a higher level of resolution and look at the half way point

between the 2 numbers.

Shift the A left and RES right 1 position. We see that the square of 102 is 10404 and that

is smaller than 10608 so we process it. We move A to B, add C to B, and move the result

back to C. Mark the transaction in the RES register and shift A and C right and left.

A= 0 0 0 0 0 0 0 1 -> (1)

B = 0 1 1 0 0 1 1 1 (103) x 103 = 10609

C= 0 1 1 0 0 1 1 1 (103)

RES= 0 1 1 0 0 1 1 1 <- (103)

We have now guessed that the root of 10609 is smaller than 104 and larger than 102. We

now repeat the process to a higher level of resolution and look at the half way point

between the 2 numbers.

And we obtain an answer of 103, being the square root of 10609

The shit register, made of a sequence of D latches, or memory cells, linked sequentially

allows us to perform multiplication, division, square and square root functions.

3.8 Trigonometric Tabular functions.

Now we move up to the more complex trigonometric functions like sine, cosine and

tangents. Again we are faced with the dilemma of speed. We can have a highly accurate

process, but that takes time to process. On the other hand we desire speed so we use a

slightly less accurate algorithm, but one that is blindingly fast. To do this we draw a

lookup table. Into each item of the matrix, we place a value. The table represents the first

quadrant where both the X and the Y values are positive values.

7 8.131 15.943 23.199 29.745 35.538 40.601 45

6 9.462 18.435 26.565 33.690 39.806 45 49.399

5 11.310 21.801 30.964 38.660 45 50.194 54.462

4 14.036 26.565 36.870 45 51.340 56.310 60.255

3 18.435 33.690 45 53.130 59.036 63.435 66.801

2 26.565 45 56.310 63.435 68.199 71.565 74.055

1 45 63.435 71.565 75.964 78.690 80.538 81.87

0 1 2 3 4 5 6 7

Now we take the vector whose angle we wish to determine.

First we determine the vector, for this determines the scaling size. The length of the

vector, L = SQR(x^2 + y^2) and in this case, L = 53.

One uses a table size suited to the resolution one needs. Above we have use an 8 x 8 table

to demonstrate the concept, but it is common to use even larger tables. From the above

we can see that a vector of X=4 and Y=2 equals an angle of 63.435°. That would hold

true for X=40 and Y = 20.

But what about X=47 and Y= 26?

We would take

X = 4 + 4 + 4 + 5 + 5 + 5 + 5 + 5 +5 + 5 = 47

Y = 2 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 3 + 3 = 26

The Angle for X=4,Y=2 is 64°, X=5,Y=2 is 68° and X=5,Y=3 is 59°.

So the angular sequence for the above 10 vectors are :

63.435° + 63.435° + 63.435° + 68.199° + 59.036° + 59.036° + 59.036° + 59.036° +

59.036° + 59.036° = 612.72/ 10 = 61.272°

The formula for determining an angle is : Theta = Arctan (Y/X) * radians

The exact angle according to the formula is 61.049°.

There is a slight discrepancy because we are only working with an 8 x 8 matrix. That is

only a 3 bit resolution but you can see from the principle of the calculation, that the result

is actually amazingly close for just a 3 bit resolution. Set up a 4 bit resolution table and

you half the error. As it is, the error is less than half a bit or half a degree. 4 bits would be

a ¼ degree error, 5 bits a 8
th

 , 6 bits a 16
th

 , 7 bits a 32
nd

 and 8 bits a 64
th

 and so on. A

64
th

 of a degree is 0.01 degrees. So, the higher the resolution you require, the more bits

you use.

As you can see we can use relatively small tables to do quite accurate lookups.

We can do this for all the higher trig functions and even for custom math functions. One

can for example have a table for the length of the diagonal of a right-angled triangle.

5 5.099 5.385 5.831 6.403 7.071

4 3.873 4.472 5.000 5.657 6.403

3 3.162 3.606 4.243 5.000 5.831

2 2.236 2.828 3.606 4.472 5.385

1 1.414 2.236 3.162 3.873 5.099

0 1 2 3` 4 5

4.472 + 4.472 + 4.472 + 5.385 + 5.381 + 5.281 + 5.831 + 5.831 + 5.831 + 5.831 = 53.787

The Square (46^2 + 27^2) is actually 53.7122

Our low resolution lookup tables generate a vector length of 53.783 units at 61.272° for

a X/Y offset of X=47 and Y=26.

Once again, a very small lookup table is used to generate a surprisingly accurate result.

The nice thing about lookup tables is of course that they are blindingly fast. To really

speed things up, one could even put the answers to addition, subtraction, multiplication,

division and square root operations into lookup tables.

X = 6, Y = 5, And the answer, 30, is at the memory location. No lengthy calculations

involved. Just go and fetch the answer at the relevant location of the matrix. It is common

practice to compile lookup tables for the more time consuming functions in programs that

need to perform at very high speed.

Lets say you had a micro controller that read a 2 axis hall effect sensor in order to provide

a digital compass function. How accurate do you need it to be. 1 degree resolution with a

less than .5 degree error is more than adequate for 99% of the applications. That would be

an ideal application for a high speed low resolution lookup table.

This then has been an over view of the processes that are followed by computers to

perform mathematical operations. The ALU (Arithmetic Logic Unit) in the computers

CPU (Central Processing Unit) is able to perform almost any mathematical function

through bit manipulation in dedicated hardware using adders, multipliers, shift registers,

or by following longhand mathematical processes and by using high speed lookup tables

for the higher mathematical functions.

3.9 Digital signal processing & filtering examples

Having looked at how the processor performs mathematical functions, we now look at

how a signal is processed by the CPU.

The process of Digital Signal Processing requires that we sample an input signal and

process it digitally. The result of that process is then used to generate a relevant output.

There are a large number of DSP algorithms for a wide range of applications.

We will look at 2 examples related to amateur radio.

Digital filtering and Spectral analysis

The first step is to take a sample of the incoming analog waveform and convert it into a

digital value, represented in binary format inside the processor. There is a certain amount

of time that must pass from the time that a sample is taken till the time that the next

sample is taken. This is referred to as the sample time delay.

Lets look at a simple sine wave digitizing process in the sketch below.

A sine wave is digitized over a number of samples. Sample 0 is referred to as the

reference point, or V(0). This value is pushed into memory, and another digitization

produces the next value V(1). This process continues till we have a queue of values lined

up in the memory of the processor.

What we now do is subtract V(1) fro V(0), V(2) from V(0), V(3) from V(0) and so on.

In the above case where the sine wave length is 8 samples long, you will see that the

difference between V(0) and V(8) is always zero. The difference between V(0) and V(7)

is 0.7 and the difference between V(0) and V(9) is 0.7

If we apply the formula a=1/(d+s) where a= amplitude, d= difference and s = scaling

factor, we can get an amplitude for each sampling delay period. In this case, S(7) = 1.25,

S(8) = 10 and S(9) = 1.25.

This process is presented diagrammatically in the following sketch.

The output amplitude signal of each channel is represented as X(7), X(8), X(9) etc, etc.

The curve along the bottom shows the resonant peak appearing at X(8). In the above

formula, there is a subtraction process where the two samples are subtracted from each

other, and a multiplication process to obtain a scaling factor. (The process of dividing by

2 is the same as multiplying by 0.5, so even though the formula shows a division, we

indicate the process with a multiplying function block.)

What we do have however is an 8 channel spectral output for a single frequency input.

This is a single frequency model. What we now need to do is a multi frequency analysis

model.

The following model indicates a Fast Fourier Transform (FFT) process on the 8 signal

channels derived above.

The channels X(0) – X(7) are our inputs. The lines from left to right represent a time

delay. The addition and multiplication processes work the same as above. Signals are

applied out of phase, at different time intervals to generate an 8 channel multi frequency

spectral profile.

The resolution of using 8 channels is however very coarse. I have therefore applied the

same algorithm to a 512 channel FFT process.

1->2->4->8->16->32->64->128->256->512

Here are the results for a FFT spectrum analyzer using the above process.

A single frequency FFT analysis using 512 samples into 512 channels.

A single frequency of 1148 Hz is applied into the model at 50mV. The top trace shows

the applied sine wave. The second trace shows the spectral peak of that frequency. The

third trace shows the second trace data integrated to a depth of 128 samples to clean up

the noise factor in the signal. We are therefore looking at a three dimensional matrix of

512 elements by 512 elements by 128 elements.

Our simulator allows us to feed the algorithm with a sine wave of variable amplitude and

frequency and frequency and a noise factor of varying levels. I use this program to test

various DSP algorithms before committing them to assembler code in a micro controller.

We now reduce the signal amplitude to 10mV signal and 10mV noise. As can be seen, we

are still able to discern a clear peak at 1148 Hz on the bottom trace which represents the

integrated output.

Increasing the noise level to 20mV still produces a discernable spike.

A signal of 10 mV is still clearly visible on 40mV of noise.

At 120mV noise to 10 mV signal, we reach the limits of our algorithm. We can no longer

discern any spike on the spectrum trace and the integrator output is barely able to pull a

signal up out of the noise floor.

We have now re-scaled the display to represent 2 frequencies superimposed on each

other, we have reduced the signal amplitude to 5mV and increased the integrator depth to

256 samples. This generates the above traces with noise at 0.

Increasing the noise to 200mV, (23dB) produces the following trace. As can be seen

above, increasing the integrator depth allows one to pull a very weak signal up from

below the noise floor. The problem is that the deeper the integrator, the longer the

process.

The greater the depth of the integrator, the slower the algorithm becomes, but the weaker

the signals that can be detected. In a 512 x 512 x 256 algorithm, we are performing the

calculations on 67108864 elements of the matrix.

This is the basic principle of a noise canceling spectrum analyzer. Using this system, one

can detect multiple signals. One can then look at the relationships of these signals and

extract data for digital modes.

With this system we can extract data from signals that are up to 30dB below the noise

floor. Ie, 1mV of signal to 1000 mV of noise using a 10 000 sample integrator as shown

in the screen captures below that demonstrate the output of two different algorithms.

Optimization.

Once we have an algorithm that performs a task to a satisfactory level, it becomes an

inevitable consequence that we want it to be faster. Lets look at the 3D matrix.

To begin with, if we have a good signal with low noise,

we do not need to do any integration to remove the

noise. We can simply transpose the output of the FFT

stage to the output of the integrator stage.

As the noise level increases so we can dynamically

increase the integration depth. The noisier the signal

becomes, the greater the level of integration.

Once we have isolated the desired signals in the

spectrum, we do not need to integrate the entire

spectrum. We can just integrate the narrow portion of

the spectrum that contains our signal of interest.

These optimization techniques vastly improve the

overall performance of the system. Instead of

processing the entire matrix every cycle, we only

process the portion of the matrix of interest to us.

We have looked at the mathematical processes used by a micro controller. We have

followed the functions, from the simplest addition to the highest level.

Now we shall take a more in depth look at the components of the micro controller and we

will see how it uses its various function blocks to perform the various processes described

above.

4. Central processing unit

The central processing unit is where, as the name denotes, the processing of information

takes place. To achieve this an number of function blocks are laid out in a certain

configuration. This configuration is referred to as the ‘architecture’

There are four types of architecture that can be employed to provide processing functions.

These are :

a. Harvard Architecture

b. Van Neumann Architecture

c. Neural Network Architecture

d. Self Evolved Network Architecture

We shall examine these in greater detail once we have looked at the function blocks that

make up a CPU.

4.1 Registers

Registers are the data retention blocks of a processing environment. The register is a

collection of ‘D’ type latches. A ‘D’ type latch is a Data latch. The condition at the Data

input is latched into the storage cell by the transition of a clock pulse.

Registers are groups of ‘D’ latches connected up in different configurations to perform

different functions.

4.1.1 The Shift-Right Register (Division)

The Sift right register will shift its contents to the right by 1 position with every transition

of the clock pulse.

1011 -> 0101

0101 -> 0010

0010 -> 0001

0001 -> 0000

This process is the equivalent of dividing by 2 and losing the remainder with each

successive shift. The initial value of 11 becomes 5, then 2, then 1, then zero. One has the

option to connect Dout to Din, which will then allow the data to circulate through the

shift register, left to right.

4.1.2 The Shift-Left Register (Multiplication)

The Shift left register will shift its contents to the left by 1 position with every transition

of the clock pulse.

0011 <- 0110

0110 <- 1100

1100 <- 1000

1000 <- 0000

This is the equivalent of multiplying by 2 up to the maximum width of the shift register.

After that point is reached, the overflow is lost with each successive shift. The initial

value of 3 becomes 6, which then becomes 12, and then 16. It would have become 24 if

the register was wider than 4 bits.

4.1.3 The Binary counter.

The inverted Q output is fed back to the D input and the Q output changes state with

every positive going transition of the clock input. The result is that Every Q output

changes state once for every 2 state changes on the input. Each successive D latch

therefore becomes a ‘divide-by-two’ counter.

0000

0001

0010

0011

0100

0101

0110

0111

1000

A count-up function is provided at the Q outputs while a count-down function is provided

at the /Q outputs. The up counter is therefore also a down counter,

4.1.4 The Parallel register

The parallel data register will load the data presented at the inputs Din into the D latches.

This value will then become available at the Q outputs. This is a general-purpose data

storage register that is used to retain data.

4.2 The register set.

There are a large number of registers in the processing core of the CPU. These are used

for a wide range of functions.

4.2.1 The accumulator or working register. This is the register that receives the result of

an operation within the ALU (Arithmetic Logic Unit.) If an addition, subtraction,

shift, transfer or logical operation is carried out, the destination of the operation

usually ends up in the accumulator. In certain cases it is possible to bypass the

working register

4.2.2 The general-purpose variable or data registers. All processors have a set of

registers in which they store variables or data that is being processed. Some

processors have a large number of such registers and some have a lesser number.

4.2.3 Control registers are used to control devices. Writing to a control register will

control the operation of a device in the processing environment.

4.2.4 Status registers are used to indicated the status of a device. When a mathematical

operation results in an overflow, the status bit that indicates an overflow will be

set. By performing an operation and checking the overflow bit in the ALU status

register, we can see if an arithmetic operation has resulted in an overflow.

4.2.5 Input registers contain data that has come in from external devices. Things like

timers, counters, serial ports, analog to digital converters.

4.2.6 Output registers contain data that is destined for an external device.

4.2.7 Counters. There are various types of counters. The most important is the program

counter. This counter contains the address of the instruction being processed by

the CPU. Upon the completion of each instruction, the CPU will increment the

program counter, recall the next sequential instruction and execute it.

ALU

I/O

Interrupts

Opcodes

Serial data communications

Parallel data communications

Counters and timers

Analog to digital conversion

Digital to analog conversion

Memory

