12 VDC Distribution &

Components

A Short Overview

Roy Newton
ZS6XN / ZS5HX

Roy Newton, ZS6XN September 2006

Adapted and enlarged from the original ARRL article by:

Gary Wilson, K2GW, Section Emergency Coordinator, Southern New Jersey Section, ARRL

It's as clear as

Black and Red

Roy Newton, ZS6XN September 2006

What Voltage is it?

- 15.5V Absolute Maximum for most Radios
- 14.4V (2.4) Full Charge
- 13.8V (2.3) Alternator output; Gel Cell Float voltage
- 13.5V Radio Design; Auto engine running
- 13.2V (2.2)
- 12.6V (2.1)
- 12.2V Ignition off
- 12.0V (2.0)
- 11.5V Minimum for most radios
- 10.5V (1.75) Battery discharged

Typical Amateur Radio Power Requirements

> HF Equipment

- 2 Amps Receive
- 20 Amps Transmit

Receive Time (per hour)	Transmit Time (per hour)	Required Capacity (AH)	Available battery hours (105AH)
0,75	0,25	6,5	16,2
0,5	0,5	11,0	9,5
0,25	0,75	15,5	6,7

Typical Amateur Radio Power Requirements

VHF Mobile Rigs

- 1 Amp Receive
- 10 Amps Transmit

Receive Time (per hour)	Transmit Time (per hour)	Required Capacity (AH)	Available battery hours (105AH)
0,75	0,25	3,25	32,3
0,5	0,5	5,5	19,1
0,25	0,75	7,75	13,5

DC Power Sources

- Linear Power Supplies
 - Big & Heavy
 - Indestructible
- Switching Power Supplies
 - Lightweight
 - More complex
 - Can generate noise (RF and AF)

12 Volt Batteries

- Work when AC mains fail
- Require maintenance
- Involve chemistry
- Need venting
- Require charging Source
 - Mains
 - Alternative
 - Generator
 - Solar
 - Wind
 - Hydro-Electric

Lead Acid Batteries

- Automotive Type
 - They're everywhere!
 - Designed for
 - Short, high current discharge bursts
 - Followed by immediate recharge

Repeated Deep cycle use will kill them

Lead Acid Batteries

- Deep Cycle (Marine/RV)
 - Designed for deep discharge use
 - Check water & charge state monthly
 - If not of "Maintenance Free" type

Lead Acid Batteries

> GelCels

- Smaller capacity
- Most are spill proof
- Check charge state monthly
- Can be stand-by floated with isolation
- Installation orientation independent

Testing Gel cells.

- >> 12.8 Open voltage
- > Less than .5 Volt drop after test
- > < 10 amp hour
 - Load of "C" for one minute
- >> 10 amp Hour
 - 1 minute full key down into dummy load.

Cable for 12VDC

- Keep leads short
- Match wire gauge to anticipated peak load and fuse accordingly

```
    8 Gauge – 60 Amps - 8 mm² (10 mm²)
```

- 10 Gauge 40 Amps 5 mm² (6 mm²)
- 12 Gauge 25 Amps 3 mm² (4 mm²)
- 14 Gauge 20 Amps 2 mm² (2.5 mm²)
- 16 Gauge 10 Amps 1 mm² (1.5 mm²)
- 18 Gauge 8 Amps 0.8 mm² (1.0 mm²)

Wire standards for 12VDC

- > Red for Positive
- Black for Negative (typically also earth)

> Red/Black zip cord keep things neat!

Why Battery Fusing?

- Batteries can deliver 100's of amps
 - CCA 550A for a 105AH battery such as Deltec M27MF
 - i.e. $550A \times 12V = 6600W$
 - or 550A x 7.5V = 4175W
- This energy can melt wires, create fires and boil (violent gassing) battery acid

Why Battery Fusing?

- All batteries need to be fused at LEAST at the positive terminal!
- > Always cover the positive terminal
 - for negative earthed vehicles
- Fusing and covering the negative terminal is also good practice

Fuse Storage

- Store spare fuses with/near the battery
 - Fishing tackle boxes
 - Film canisters

Battery Fusing

- > Blade Fuses
- Mini-Blade Fuses
- Ceramic Fuses
- ➤ Glass Fuses 32mm
- ➤ Glass Fuses 20mm
- Thermal Fuses (resetable)
- Circuit Breakers
 - Use ONLY specifically designed and rated DC circuit breakers

Battery Fusing

- > Ceramic Fuses
- > Glass Fuses
 - 32mm
 - 20mm

Roy Newton, ZS6XN September 2006